Search results for "martingale coupling"

showing 2 items of 2 documents

Establishing some order amongst exact approximations of MCMCs

2016

Exact approximations of Markov chain Monte Carlo (MCMC) algorithms are a general emerging class of sampling algorithms. One of the main ideas behind exact approximations consists of replacing intractable quantities required to run standard MCMC algorithms, such as the target probability density in a Metropolis-Hastings algorithm, with estimators. Perhaps surprisingly, such approximations lead to powerful algorithms which are exact in the sense that they are guaranteed to have correct limiting distributions. In this paper we discover a general framework which allows one to compare, or order, performance measures of two implementations of such algorithms. In particular, we establish an order …

Statistics and ProbabilityFOS: Computer and information sciences65C05Mathematical optimizationMonotonic function01 natural sciencesStatistics - ComputationPseudo-marginal algorithm010104 statistics & probabilitysymbols.namesake60J05martingale couplingalgoritmitFOS: MathematicsApplied mathematics60J220101 mathematicsComputation (stat.CO)Mathematics65C40 (Primary) 60J05 65C05 (Secondary)Martingale couplingMarkov chainmatematiikkapseudo-marginal algorithm010102 general mathematicsProbability (math.PR)EstimatorMarkov chain Monte Carloconvex orderDelta methodMarkov chain Monte CarloOrder conditionsymbolsStatistics Probability and UncertaintyAsymptotic variance60E15Martingale (probability theory)Convex orderMathematics - ProbabilityGibbs sampling
researchProduct

Conditional convex orders and measurable martingale couplings

2014

Strassen's classical martingale coupling theorem states that two real-valued random variables are ordered in the convex (resp.\ increasing convex) stochastic order if and only if they admit a martingale (resp.\ submartingale) coupling. By analyzing topological properties of spaces of probability measures equipped with a Wasserstein metric and applying a measurable selection theorem, we prove a conditional version of this result for real-valued random variables conditioned on a random element taking values in a general measurable space. We also provide an analogue of the conditional martingale coupling theorem in the language of probability kernels and illustrate how this result can be appli…

Statistics and Probability01 natural sciencesStochastic ordering010104 statistics & probabilitysymbols.namesakeMathematics::ProbabilityStrassen algorithmWasserstein metricmartingale couplingvektorit (matematiikka)FOS: MathematicsApplied mathematics0101 mathematicsstokastiset prosessitMathematicsProbability measurekytkentäconvex stochastic ordermatematiikka010102 general mathematicsProbability (math.PR)Random elementMarkov chain Monte Carloconditional couplingincreasing convex stochastic orderpointwise couplingsymbols60E15probability kernelMartingale (probability theory)Random variableMathematics - Probability
researchProduct